Agricultural Plant Phenotyping

Why are we doing Plant Phenotyping?

agricultural field harvesting
lemnatec imageaixpert

Phenotyping – measuring the phenotypes of organisms

Phenotyping is central to the human experience of the natural world. Phenotyping drove the domestication events that are hallmarks of the Neolithic revolution, and underlies the yield improvements recognized by modern agriculture. Gregor Mendel phenotyped traits in pea plants to formulate the Laws of Inheritance describing equal segregation, independent assortment, and dominance of alleles.

Increasingly sophisticated phenotyping tools are needed to recognize the trait-improvement potential of genome-wide association studies in areas such as phenotypic differentiation of complex traits, phenotypic plasticity across environments, and phenotypic validation of genomic predictions.

Digital tools are key in state-of-the-art phenotyping. Mendel’s visual scoring was ground-breaking, but in the 21st century computer-assisted sensing and machine learning is the way forward in solution-oriented phenotype measuring.

LemnaTec fulfills this need by developing computer vision tools for high-resolution plant phenotyping in controlled-environments and fields. LemnaTec integrates industrial sensors and illumination with powerful analytical software and robotic automation. Thereby we deliver high-quality digital phenotypic data for agricultural research and product development.

LemnaTec multi-sensor systems measure parameters in 2D images and 3D laser scans across the wavelength spectrum including the visible range, near-infrared, infrared hyperspectral, and PAM fluorescence. The results enable breeders to derive a comprehensive digital phenotype. These data describe plant growth, development, color, geometry, biomass, stress response, disease status, water- and nutrition status, and much more information on structural and physiological traits.